$$\frac{\S | |. Chevn-Simons functionals and}{Ray-Singer torsion}$$

Zet M be a compact oriented 3-manifold
without boundary. Set G= SU(2)
 \longrightarrow consider principal G bundle PowerM
 $A = \text{space of connections}$
 $\equiv \Omega(M, q)$
CS: $A \rightarrow \mathbb{R}$ is defined by
 $CS(A) = \frac{1}{8\pi^2} \int_{M} Tr(A \wedge dA + \frac{2}{3} \wedge A \wedge A), AeA$
We have for ge g = Map(M,G):
 $g^*A = g^{-1}Aq + g^{-1}dq$
and $CS(g^*A) = CS(A) + n$, $n \in \mathbb{Z}$
Note that
 $g^*A = A + t(df + [A, f]) + O(t^*), AeA$.
 $=: d_A f$
Zet xe A be a flat connection
and denote by Ω_X the space
of j-forms a M with values in q_X

$$\rightarrow de \ Rham \ complex:
$$0 \rightarrow \Omega_{x}^{2} \rightarrow \Omega_{x}^{2} \rightarrow \Omega_{x}^{2} \rightarrow \Omega_{x}^{3} \rightarrow 0$$
with differential d_{x} . $(d_{x} \circ d_{x} = 0 \ follows$
from flatness)
In the following, we assume: $H^{*}(M,g_{x})=0$
Assymptotic expansions:
 $reall: \int e^{-Mx^{*}} d_{x} = \int \frac{\pi}{m}, \ M > 0$

$$Ty \ analytic \ continuation:
$$\int e^{i\lambda x^{*}} d_{x} = \int \frac{\pi}{m} e^{\frac{\pi}{M}} \frac{\lambda}{\lambda} e^{R}, \lambda \neq 0$$
Yet Q be a non-degenerate quadratic form in x_{1}, \dots, x_{n} and denote by sgn Q
Its signature. Then

$$\int e^{iQ(x_{1},\dots,x_{n})} d_{x_{1}} \cdots d_{x_{n}} = \frac{\pi^{M}}{\pi^{N}} e^{\frac{\pi}{M}} sn Q$$
Consider now the asymptotics of the integral $\int e^{iK f(K_{1},\dots,X_{n})} d_{x_{1}} \cdots d_{x_{n}}$$$$$

as
$$K \rightarrow \infty$$
. Let's deal with one variable
first: $g(\kappa) = \int_{-\infty}^{\infty} e^{i\kappa f(x)} dx$, $\kappa \rightarrow \infty$
"Stationary phase method":
magiar contribution to above integral arises
from critical point of find
 $g(\kappa) \sim \int e^{i\kappa f(\kappa)} d\kappa = \int e^{i\kappa (f(\kappa) + u^{*})} \frac{2u}{f(\kappa)} du$
where $u^{2} = f(\kappa) - f(\kappa_{0})$
 $\int \frac{du}{d\kappa} = \frac{1}{2} - \frac{f'(\kappa)}{u}$
By using

we obtain

$$g(k) \sim \left(\frac{1}{f''(k_{0})}\right)^{k_{1}} \int_{-\infty}^{\infty} e^{iKu^{2} + iKf(k_{0})} du$$

$$\stackrel{(*)}{=} \left(\frac{2\pi}{Kf'(k_{0})}\right)^{k_{1}} e^{iKf(k_{0}) + \frac{\pi i}{4}} \quad \text{for } K \to \infty$$
Similarly, we obtain

$$\int e^{iKf(k_{1},...,k_{n})} dx_{1} \cdots dx_{n}$$

$$\stackrel{\mathbb{R}^{n}}{\sim_{K \to \infty}} \sum_{x} \frac{\pi^{n_{x}} e^{iKf(k_{0})}}{\sqrt{1 \det H(f_{n})!}} e^{\frac{\pi i}{4} \operatorname{sgn} H(f_{n})}$$
where the sum is now over all evitical
points a of f and $H(f_{n}x)$ is the Hessian
of f at κ .
Zet us now go back to the Chern-Jimons
functional
 \longrightarrow critical point $s =$ flat connections
Denote by (Ω_{x}^{*}, d_{x}) the de Rham complex
cssociated with κ a flat connection. We have
 $T_{x} A \cong \Omega'(M, q)$
with inner product

$$\langle A, B \rangle = -\frac{1}{2\pi^{2}} \int \operatorname{Tr} (A \wedge *B)$$

$$\xrightarrow{M}$$

As CS is inv. under inf. gauge
$$h_{s}^{\alpha}$$
.
 \bigcirc degenerates on \mathcal{G}_{α} .
 \longrightarrow non-degenerate on $\Omega_{\alpha}^{\prime}/d_{\alpha}\Omega_{\alpha}^{\alpha}$
Computation of det Q:
consider operator
 $P = s(d_{\alpha}* + *d_{\alpha})$
acting on
 $\Omega_{\alpha}^{\prime} \oplus \Omega_{\alpha}^{3} \cong \Omega_{\alpha}^{\prime} \oplus \Omega_{\alpha}^{\circ}$ (Poincaré duality)
where $\varepsilon|_{\Omega_{\alpha}^{\circ}} = 1$ $\varepsilon|_{\Omega_{\alpha}^{\prime}} = -1$
The action of P on the direct sum
 $\Omega_{\alpha}^{\circ} \oplus \operatorname{Imd}_{\alpha} \oplus \operatorname{Herd}_{\alpha}^{*}$
is given by
 $P = \begin{pmatrix} 0 & -d_{\alpha}^{*} & 0 \\ -d_{\alpha} & 0 & 0 \\ 0 & 0 & Q \end{pmatrix}$, $Q = -*d_{\alpha}$
and we have $P^{2} = \Delta_{\alpha}^{\circ} \oplus \Delta_{\alpha}^{\prime}$
Here $\Delta_{\alpha}^{j} = d_{\alpha}^{*} d_{\alpha} + d_{\alpha} d_{\alpha}^{*}$ for $j = 0, 1$.

"regularized determinant" of Zoplace-op.
$$\Delta$$
:
Zet $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_j \leq \cdots$ be positive
eigenvalues of Δ counted with multiplicities
 \rightarrow define "spectral zeta function":
 $J_{\Delta}(s) = \sum_{j=1}^{\infty} \frac{1}{\lambda_j^s}$
 \rightarrow analytic continuation gives meromorphic
function on C with definite
values $J_{\Delta}(o)$ and $J'_{\Delta}(o)$
set det $\Delta = \exp(-J'_{\Delta}(o))$
 $\int_{\Delta} J'_{\Delta}(s) = \frac{d}{ds} \sum_{j=1}^{\infty} \exp(-\log \lambda_j \cdot s)$
 $= \sum_{j=1}^{\infty} -\log \lambda_j \exp(-\log \lambda_j \cdot s)$
 $\rightarrow \exp(-J'_{\Delta}(o)) = \prod_{j=1}^{\infty} e^{\log \lambda_j} = \prod_{j=1}^{\infty} \lambda_j$

It was shown by Ray and Singer that
for a flat connection
$$\alpha$$
, that
 $T_{\alpha}(M) = \frac{(\det \Delta_{\alpha})^{3/2}}{(\det \Delta_{\alpha})^{3/2}}$
is a topological invariant of M
 \rightarrow "Ray-Singer torsion"

$$\frac{Proposition 1:}{The regularized determinant of Hessian} \\ Q of CS-functional at flat con. x is
$$\frac{\overline{det d_x d_x}}{\sqrt{1 det Q1}} = T_x^{1/2}$$$$